5 Microsoft

Trends, challenges, and strategic shifts in the
software vulnerability mitigation landscape

Matt Miller (@epakskape)
Microsoft Security Response Center (MSRC)

BlueHat IL
February 7t, 2019

This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Approaching the problem of vulnerability mitigation

Attackers transform software vulnerabilities into tools for delivering a payload to a target device

Stack Buffer Overrun
Heap Buffer Overrun

Software
Vulnerability Use After Free

Type Confusion

Class-specific
exploitation
primitives

\

Arbitrary native

_ code execution
Generic

exploitation
primitives

Data-only Payload

corruption

\)

Arbitrary R/W

Stack Buffer Overrun
Heap Buffer Overrun Class-spea
Use After Free
Type Confusion

Software

Vulnerability exploitation

primitives

Generic

exploitation
primitives

Arbitrary native
code execution

Data-only Payload
corruption

¥
‘ Arbitrary R/W

Attackers typically need to elevate privileges

This means applying the same defenses to privileged attack surfaces

Stack Buffer Qverrun Arbitrary native

Heap Buffer Overrun code execution

Use After Free

Generic
exploitation Data-only
primitives corruption

Class-specific
exploitation
primitives

Payload

Software
Vulnerability

Type Confusion

¥
| Arbitrary R/W ‘

At some point, we lose containment as a defense

This leaves eliminating vulnerabilities & breaking techniques

1

Microsoft’s vulnerability mitigation strategy for the past 10+ years

Strategy Make it difficult and costly to find, exploit, & leverage vulnerabilities

- o NULL deref protection,
Eliminate vulnerabilities Mem GC, attack surface
reduction, ...
Break exploitation techniques G2, ASLR, DEF ACG, CIG
CFG, ...
Tactics
- : AppContainer &
Contain damage & prevent persistence Virtualization
L : : : Mature detection &
Limit the window of time to exploit R X

We've been at this for a while — how has the vulnerability threat landscape evolved?

2

Microsoft vulnerability &
exploitation trends

Statistician disclaimer: small numbers ahead, the word trends is used loosely ©

Defining our scope

Vulnerabilities reported to Microsoft are typically addressed in one of two ways

Online Service
Update

©
Endpoint
Software Update

~85% of those vulnerabilities were Remote
Code Execution (RCE), Elevation of Privilege
(EOP), or Information Disclosure (ID)

Vulnerability report to
secure@microsoft.com

In 2018, ~54% of reported vulnerabilities

were addressed via a software update

Today we'll be focusing on Microsoft RCE, EOP, and ID vulnerabilities (CVEs) addressed via a software update
4

More vulnerabilities fixed, fewer known exploits

of CVEs by patch year % of CVEs exploited within 30 days of patch

100%
95%
90%
85%
80%
75%
70%
65%
60%
55%
50%
45%
40%
35%
30%
25%

of CVEs

20%
15%
10% X
5%
0% o s [—
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Patch Year
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Patch Year W Exploited M Not known to be exploited

On the surface, risk appears to be increasing But known actualized risk appears to be decreasing

5

When a vulnerability is exploited...

% of CVE exploited as zero day by first attack scenario

% of CVEs by when they were first exploited

100%
95%
90%
85%
80%
75%
70%
65%
60%
55%
50%
45%
40%
35%
30%
25%
20%
15%
10%

5%
0%

-

2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018

Patch Year

M Exploited as zero day W Exploited within 30 days of patch

If a vulnerability is exploited, it is most likely going to be
exploited as zero day

It is now uncommon to see a non-zero-day exploit
released within 30 days of a patch being available

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

m Targeted Attack = Proof of Concept = Public Exploit Framework = Criminal Exploit Kit

When a vulnerability is exploited as zero day, it is
most likely to first be used in a targeted attack

Older software versions are typically targeted by
exploits 6

What about the zero day exploits we don't know about?

It is challenging to effectively estimate the number of unknown zero day exploits

Hypothesis: increased exploit costs drive selective use Assertion: economics of the zero day market have shifted

v Windows 10 is always up to date
« Poor ROI for exploiting patched vulnerabilities

« Rapid evolution of defensive technologies

Probability of
detection

v Mass-market exploit kits have struggled to maintain supply
» Decrease in reusable & public exploits
» Cost to acquire exceeds expected ROI

of times zero day exploit used

v" Probability of detection increases with zero day use

« Attackers are incentivized to minimize use : : : :
v" Market shifted toward social engineering
* Targets that detect zero day may alert vendor I :
* Macros, phishing, tech support scams, pw spraying, ...
v Selective use reduces downstream supply MAGNITUDE ACTOR ADDS A SOCIAL ENGINEERING SCHEME FOR WINDOWS 10
* Many actors lack means and capability to acquire MARCH 08,2017 Kafeine

https://www.proofpoint.com/us/threat-insight/post/magnitude-actor-social-engineering-scheme-windows-10

Widespread attacks are now the exception, not the norm

' Widespread attacks via

. exploits are now uncommon
\ v Pervasive sandboxing

} v Strong mitigations

. e

Office, Adobe Reader | 7 REgUIET Lpeties

Productivity app exploits
Server-side exploits

1S, SQL, DCOM

Browser-based exploits

Exceptions
exist, e.q.

Internet Explorer, Adobe Flash, Java, ActiveX controls WannaCry

e o
| ®
|

Windows XP SP2 Ships Office 2010 Ships

Firewall on-by-default & DEP DEP, ASLR, & Protected View

Windows Vista Ships Edge ships

ASLR Sandbox, ASLR, DEP, CFG, etc

The echoes of pervasive sandboxing

The prevalence of sandboxes has increased the need for a sandbox escape

Security impact of CVEs exploited within 30 days of patch Execution domain of CVEs exploited within 30 days of patch

100% , \/ U ” ‘ 'VI 100%),
. - —— T
90% 3 3 90%
85% 85%
80% 80%
75% 75%
70% 70%
65% 65%
60% 60%
55% 55%
50% J 50%
45% 45%
40% 40%
35% 35%
30% 30%
25% 25%
20% 20%
15% 15%
10% 10%
5% 5%
0% 0%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Patch Year Patch Year
B Remote Code Execution W Elevation of Privilege B Information Disclosure B UserMode M KernelMode

Since ~2014, we've seen an increase in EOP exploits in-the-wild, largely focused on kernel mode vulnerabilities

Memory safety issues remain dominant

We closely study the root cause trends of vulnerabilities & search for patterns

% of memory safety vs. non-memory safety CVEs by patch year

100%
90%
sy M /__/\
70% = = — - = == = —

60%

50%

% of CVEs

40%

30%

20%

10%

0%
2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018

Patch Year

Bm Memory safety B Not memory safety

~70% of the vulnerabilities addressed through a security update each year continue to be memory safety issues
10

Drilling down into root causes

i =0=c T CVES by pa e Stack corruptions are essentially
dead

100%
90%
s Use after free spiked in 2013-2015
due to web browser UAF, but was
mitigated by Mem GC

70%
60%
50%
Heap out-of-bounds read, type

confusion, & uninitialized use
have generally increased

40%
30%
20%
10% Spatial safety remains the most

common vulnerability category

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 (heap OUt-Of-bOUHdS read/write)
M Stack Corruption ® Heap Corruption B Use After Free B Type Confusion ® Uninitialized Use ® Heap OOB Read m Other

[

Note: CVEs may have multiple root causes, so they can be counted in multiple categories

0%

Root causes of exploited vulnerabilities

The root cause of exploited vulnerabilities provide hints on attacker preference & ease of exploitability

Root cause of CVEs exploited within 30 days of patch

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Patch Year

W Stack Corruption M Heap Corruption M Use After Free B Type Confusion Uninitialized Use Heap OOB Read M Other

Note: CVEs may have multiple root causes, so they can be counted in multiple categories

Use after free and heap
corruption continue to be
preferably targeted

"Other” category consists of a few
common types of issues:

e XSS & zone elevation issues
« DLL planting issues

e File canonicalization &
symbolic link issues

12

Exploring spatial safety vulnerabilities

Adjacent read/write (buffer overruns) have become less common than non-adjacent (out-of-bounds read/write)

Spatial safety CVEs by category

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014

M adjacent M non-adjacent

Note: CVEs may have multiple root causes, so they can be counted in multiple categories

2015

2016

2017

2018

Adjacent spatial safety violation

When the initial out-of-bounds
access is always immediately
adjacent to an allocation, e.q.
displacement is not controllable.

memcpy (dst, src, n);

Non-adjacent spatial safety violation

When the initial-out-of-bounds
access can be beyond the immediate
bounds of an allocation, e.g.
displacement is controllable.

dst[offset] = x; // offset 1is

// controlled
13

Challenges with vulnerability
mitigation today

Challenges with eliminating vulnerabilities [1/2]

Most of the vulnerability
classes that existed 20+
years ago still exist today

SDL & training can help, but
cognitive load on
developers remains high

Software is increasingly
developed with disjoint
security policies & standards

Finding every vulnerability is
not scalable or practical

Some vulnerability classes have been eliminated, but most remain
Developers are still making many of the same mistakes

Developers are expected to self-identify & prevent vulnerabilities, often
without sufficient tools to do so

Increasing adoption of OSS means inheriting varying security practices
Not reasonable to expect training, SDL, or other policies to be on par

Hunting for vulnerabilities is necessary today, but insufficient
The number of vulnerabilities found & fixed continues to
increase despite decades of effort by many people & tools

Challenges with eliminating vulnerabilities [2/2]

New vulnerability classes
have arisen that were not
anticipated

» Speculative execution side channels (Spectre, Meltdown, etc) have
impacted the security boundaries that software relies on

VM 2 (VTL 0)

Process 1 Process 2 Process 1

Process 1 o) (VTL 0) (VTL 1)

Software l
sandbox1 L sandbox2 k|

Kernel Kernel
(VTL 1)

Hypervisor

Challenges with breaking exploitation techniques [1/4]

Since ~2012 we've been pursuing a set of solutions to mitigate arbitrary native code execution

Prevent Control Flow Guard (CFG) Shadow stack

COI’.l.tI’O|-.f|OW Enforce control flow integrity Use a separate stack for return
huackmg on indirect calls addresses

Shipped Future

(CETm)

Prevent Code Integrity Guard (CIG) W Arbitrary Code Guard (ACG)

arbitra "y (,:Ode Images must be signed and arbitrary Prevent dynamic code generation,
genera’uon images cannot be loaded modification, and execution

CFG+CIG+ACG are enabled on Windows 10 for
Edge, Hyper-V VM Worker Process, and the How have exploits adapted?
Windows kernel (when HVCI enabled)

[1] CET = Intel's Control-flow Enforcement Technology

17

Challenges with breaking exploitation techniques [2/4]

Most exploits have followed the same general steps since ~2016

Place array
base or length
at predictable

location

Modify array base or
length via memory

corruption, enabling
arbitrary read/write

Use arbitrary
read/write to
discover DLL
base address

Use arbitrary
read/write to
discover DLL
base address &
stack address

Corrupt return
address and trigger
return to first gadget

Construct ROP
payload by searching
for code sequences
in the DLL

Corrupt function
pointer and trigger
function call to first

gadget

Corrupt C++ virtual
table pointer and
trigger method call to
first gadget

Corrupt state of
security policy

Read sensitive
content

Execute
ROP
payload

Execute
arbitrary
native
code

Challenges with breaking exploitation techniques [3/4]

Robust, efficient, and

compatible control-flow

« CET will address the last major gap related to return address protection
« We've encountered multiple design limitations with CFG that are

integrity has proven difficult challenging to address assuming arbitrary read/write at arbitrary times

Limitation
Calling valid functions out of context

Modifying memory that is used to
create a CPU context

Making read-only memory writable
Reusing stale code pointers

Downgrade attacks

Corrupting a function pointer with the address of “system” or other sensitive functions is
possible because CFG is coarse-grained today

Corrupting data used by the loader, exception handler, unwinder, or set thread context
can lead to setting an instruction pointer to a controlled value

Coercing an application into making read-only pages writable and then corrupting
imported functions and other data CFG expects to be read-only

Suspending a thread and then resuming it after the code referred to by the instruction
pointer has changed

Coercing an application to load a DLL that doesn’t have CFG enabled or that has a gap in
CFG instrumentation/coverage

See our talk on The Evolution of CFl Attacks and Defenses for more information
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018 02 OffensiveCon/The%20Evolution%200f%20CFI%20Attacks%20and%20Defenses.pdf 19

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf

Challenges with breaking exploitation techniques [4/4]

: At a certain level, mitigating data-only corruption is equivalent to
Data_'only corruption mitigating memory safety all-up
remains a common &

generally unsolved problem Isolating all sensitive information and security policies becomes
untenable at some point because you eventually lose containment

Array base & length corruption Kernel process token corruption Kernel object ACL corruption

Exploits typically corrupt an array base or Windows kernel exploits often corrupt the Windows kernel exploits sometimes
length to enable arbitrary read/write of Token field of an EPROCESS object to elevate corrupt the ACL associated with a kernel
memory privileges to SYSTEM object to grant unauthorized access

Robustly preventing this is non-trivial as you EPROCESS objects are dynamically allocated, This has the same challenges as
need to: mutable, and frequently accessed protecting kernel process tokens

Protect all arrays Making the Token field read-only is insufficient
Protect all pointers to arrays because all pointers to the EPROCESS need to
Protect all pointers to pointers be protected as well

This quickly decomposes to needing to solve
This quickly decomposes to needing to memory safety or isolate logic & state related
solve memory safety to the Token of an EPROCESS

These are just a few examples of the real-world challenges with mitigating data-only corruption attacks

Challenges with containing damage & preventing persistence

Fine-grained kernel attack
surface reduction

Efficient & fine-grained
compartmentalization

Rising tensions between
high density and hostile
multitenant isolation

Limiting the kernel system call interface exposed to sandboxed
applications in a configurable way is challenging on Windows today

Virtualized containers such as Windows Defender Application Guard
(WDAG) or Windows Sandbox can provide a good alternatives
Efficiently isolating components within a process is challenging today,

e.g. isolating the loader, unwinder, and exception handling logic for CFG

Software designs & implementations are not generally amenable to
fine-grained compartmentalization today

The desire for high density (web browsing, containers) is increasingly at
odds with what is necessary to provide hostile multitenant isolation

The overhead of mitigating speculative side channels affects density
(e.g. site isolation, core isolation, context switching, etc)

Challenges with limiting the window of time to exploit

Long-term support & the
evolving threat landscape

OSS, many dependencies,
and the software update
lifecycle

Long-term supported versions of software do not typically benefit from
advancements in hardening & defense

As the threat landscape evolves, older versions of software have
typically become less resilient to modern techniques

Software update supply chains are increasingly tied to components that
many apps & services take a dependency on

Coordinating patch releases amongst all app & service dependencies is
an increasing challenge

22

Strategic shifts & opportunities

What should secure software

development look like in the future?

Should it still be easy for developers to make the same mistakes they make today?
Should software & service vendors still be fixing a non-trivial number of vulnerabilities?

Should consumers & businesses still be concerned about the risk associated with software vulnerabilities?

What can we do to get a point where we are “done” with vulnerabilities?

24

What would it mean to get to ‘done”?

"done” =~ software vulnerabilities are no longer a significant problem

Minimal risk of being attacked via a vulnerability

For customers...
Security updates are uncommon and are non-disruptive

Exploitable vulnerabilities are uncommon

For attackers...
Exploiting vulnerabilities is no longer economically viable

For vendors... The total cost of secure software dev & support is minimal

We don't need to get to zero Design & logic vulnerabilities are more Individual apps & services may This is a huge challenge, but it is a
vulnerabilities to get to “done” challenging & require more thought get to “done” at different rates goal state we need to work toward
25

Toward getting to done with vulnerabilities

Our mitigation tactics are still relevant today, but our strategic objectives can improve

We want to shift the goal posts from increasing cost & difficulty toward getting to done
Make unsafe code safer Transition to safer languages Safer & more efficient dev

Eliminate common classes of Make languages safer (C++) and Make software development
memory safety vulnerabilities use safer alternatives (Rust, C#) more secure & cost effective
« Build time errors » Enforcing C++ core guidelines « Warning autofix tools

* Runtime prevention Practical usage of memory » Improve perf of safe code
safe languages

Focus more on making it durably hard for developers to make mistakes while retaining good perf & dev efficiency
26

Examples of recent progress toward this direction

Make unsafe code safer

Transition to safer languages

Joseph Bialek b
@JosephBialek

Please join the Windows kernel in wishing farewell to
uninitialized plain-old-data structs on the stack. As of
today's WIPFast build, any Windows code compiled with
/kernel also gets compiled with InitAll, a compiler
security feature that initializes POD structs at declaration.

3898424d8010000 mov qword ptr [rsp+1D8h],rax <-- 24 byte struct
180842400010008 mov qword ptr [rsp+1E®h],rax
1898424e8010000 mov gqword ptr [rsp+1E8h],rax

10:28 AM - Nov 14, 2018 - Twitter Web Client

150 Retweets 379 Likes

This bug class accounted for 49 vulnerabilities reported to MSRC in 2017-2018 (~4%)

Matt Miller
@epakskape

If you're writing C++ code or reviewing it for
vulnerabilities, consider using gsl::span as a safer
alternative to using raw pointers to access arrays. It
provides a relatively straightforward way to prevent out
of bounds read/write memory safety issues.

1socpp/CppCoreGuidelines

The C++ Core Guidelines are a set of tried-and-true guidelines,
rules, and best practices about coding in C++ - ...

& github.com

10:41 AM - Aug 29, 2018 - Twitter Web Client

We've been adopting span in key code bases (e.g. Hyper-V) and it has already
helped eliminate vulnerabilities that were later identified

27

Some of our focus areas tfor ongoing R&D

Eliminating common Adopting safer languages
vulnerability classes where it really matters

Efficient & finer-grained Stronger & more robust
compartmentalization exploit mitigations

We believe these focus areas will help us address many of the challenges we are currently facing 28

[t's important to remember there are other threats

Attack a target environment ...

Threats

Through asset compromise

Without authorized credentials

With authorized credentials

Supply chain

Physical attacks

Vulnerabilities

Insecure configuration

|dentity compromise

Malicious insiders

This presentation focused on
vulnerability mitigation, but
other threats are important to
mitigate as well

As the cost of exploiting
vulnerabilities has gone up,
other vectors have increased in
favor (e.g. social engineering,
password spraying, etc)

Wrapping up

We believe our strategy has had a positive impact & we're continuing to refine it

Many of the challenges we face are relevant to the software industry as a whole

We're excited about making more progress toward getting to done ©

Fascinated by what you saw? Want to help us make the online world safer?

Report vulnerabilities &
mitigation bypasses via our
bounty programs!

https://aka.ms/bugbounty

30

https://aka.ms/bugbounty

=m Microsoft

© 2019 Microsoft. All rights reserved. Microsoft, Windows and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft
Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of
this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

