
This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

…

We’ve been at this for a while – how has the vulnerability threat landscape evolved?

Magic
Happens

☺

Today we’ll be focusing on Microsoft RCE, EOP, and ID vulnerabilities (CVEs) addressed via a software update

130 109
141

163

234 224

155

305 317

474

417

603 600

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

#
 o

f
C

V
E
s

Patch Year

of CVEs by patch year

24 17 19 25

63
46

25

22 20 21 11 16 12

106 92 122 138

171
178

130

283 297 453 406 587 588

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Patch Year

% of CVEs exploited within 30 days of patch

Exploited Not known to be exploited

71%
76%

21%

64%

32%

46%
52% 55%

85%

67%
73%

100%

83%

29%
24%

79%

36%

68%

54%
48% 45%

15%

33%
27%

0%

17%

0%
5%

10%
15%
20%
25%
30%
35%
40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Patch Year

% of CVEs by when they were first exploited

Exploited as zero day Exploited within 30 days of patch

65%
71%

50%
44%

75%

86%

100%

75%

88% 86% 89%

100%

90%

24%

21%

25%

19%

10%

14%

0%

8%

0% 7%

11%

0%

10%12%
7%

25%

38%

15%

0% 0%

17%
0%

0%

0% 0% 0%0% 0% 0% 0% 0% 0% 0% 0%

12%
7%

0% 0% 0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

% of CVE exploited as zero day by first attack scenario

Targeted Attack Proof of Concept Public Exploit Framework Criminal Exploit Kit

If a vulnerability is exploited, it is most likely going to be
exploited as zero day

It is now uncommon to see a non-zero-day exploit
released within 30 days of a patch being available

When a vulnerability is exploited as zero day, it is
most likely to first be used in a targeted attack

Older software versions are typically targeted by
exploits

✓ Probability of detection increases with zero day use

• Attackers are incentivized to minimize use

• Targets that detect zero day may alert vendor

✓ Selective use reduces downstream supply

• Many actors lack means and capability to acquire

https://www.proofpoint.com/us/threat-insight/post/magnitude-actor-social-engineering-scheme-windows-10

✓ Windows 10 is always up to date

• Poor ROI for exploiting patched vulnerabilities

• Rapid evolution of defensive technologies

✓ Mass-market exploit kits have struggled to maintain supply

• Decrease in reusable & public exploits

• Cost to acquire exceeds expected ROI

✓ Market shifted toward social engineering

• Macros, phishing, tech support scams, pw spraying, …

https://www.proofpoint.com/us/threat-insight/post/magnitude-actor-social-engineering-scheme-windows-10

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Widespread attacks via

exploits are now uncommon

✓ Pervasive sandboxing

✓ Strong mitigations

✓ Regular updates

Since ~2014, we’ve seen an increase in EOP exploits in-the-wild, largely focused on kernel mode vulnerabilities

24 16
16

24
54 41

22 18

10 10
6

12

5

1 1
3

1

7 1 3 3

8 10

5
4

7

0 0 0 0 2
4

1 1
2

1
0

1
0

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Patch Year

Security impact of CVEs exploited within 30 days of patch

Remote Code Execution Elevation of Privilege Information Disclosure

24
16

17
24 58 42 23 19 17

13

5 7
6

0
1

2
1 5 4 3 3 3

9

6 9
6

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Patch Year

Execution domain of CVEs exploited within 30 days of patch

UserMode KernelMode

~70% of the vulnerabilities addressed through a security update each year continue to be memory safety issues

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

%

o

f
C

V
E
s

Patch Year

% of memory safety vs. non-memory safety CVEs by patch year

Memory safety Not memory safety

Stack corruptions are essentially
dead

Use after free spiked in 2013-2015
due to web browser UAF, but was
mitigated by Mem GC

Heap out-of-bounds read, type
confusion, & uninitialized use
have generally increased

Spatial safety remains the most
common vulnerability category
(heap out-of-bounds read/write)

32 24
21 22 26

13 4 11 4 1 3 7 8

36 35

43
45 64

30 36
35

28 61
71 104 79

12
16

18
22

44

57

39
113

186

183
87

81 99

4

4

13 30 21

14

7 15

25

25

36

71 81

6

4
8

8
11

6
5 6

9

22

19 82 61

1

1
2

4
9

5

7 13

17

39
76

88
55

44
30 44

41 59

103
61 120

59

159 139 197
221

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Root cause of CVEs by patch year

Stack Corruption Heap Corruption Use After Free Type Confusion Uninitialized Use Heap OOB Read Other

Top root causes since 2016:

8

13

7
11

15

2 2 1
0 0

1
0

2

10

3

4
4

13

10

7

3 5

3

4

5
0

3

1

2 3

6

16 4 11

5

6

3

6 7

1

1

2

6

14 3
4

1

1

1

0

2

0

1

0

2

0

3

4 1

1

0

0

0
1 0

0

0

0

0

0
1

0

1

0

1

0

0
0

2
0

4
4

12 10
7

4

9 10

3
4 3

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Patch Year

Root cause of CVEs exploited within 30 days of patch

Stack Corruption Heap Corruption Use After Free Type Confusion Uninitialized Use Heap OOB Read Other

Use after free and heap
corruption continue to be
preferably targeted

“Other” category consists of a few
common types of issues:

• XSS & zone elevation issues

• DLL planting issues

• File canonicalization &
symbolic link issues

Adjacent spatial safety violation

When the initial out-of-bounds
access is always immediately
adjacent to an allocation, e.g.
displacement is not controllable.

memcpy(dst, src, n);

Non-adjacent spatial safety violation

When the initial-out-of-bounds
access can be beyond the immediate
bounds of an allocation, e.g.
displacement is controllable.

dst[offset] = x; // offset is

// controlled

68 54

59
59 78 37 34 42

19
30 43

80

37

7 6

16
20 28 15 14 18

35
70 113

126

108

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Spatial safety CVEs by category

adjacent non-adjacent

VM 1 VM 2 (VTL 0) VTL 1

Control Flow Guard (CFG)
Enforce control flow integrity

on indirect calls

Shadow stack

Use a separate stack for return

addresses

Shipped
Future

(CET[1])

Prevent

control-flow

hijacking

Arbitrary Code Guard (ACG)

Prevent dynamic code generation,

modification, and execution

Code Integrity Guard (CIG)

Images must be signed and arbitrary

images cannot be loaded

Shipped Shipped

Prevent

arbitrary code

generation

How have exploits adapted?

Place array
base or length
at predictable

location

Modify array base or
length

discover DLL
base address

discover DLL
base address &
stack address

Construct ROP
payload

Corrupt state of
security policy

Read sensitive
content

With CFG+CIG+ACG available,
exploits typically focus on:

1. Targets that don’t enable them
2. Corrupting return addresses
3. Data-only corruption

Corrupt function
pointer

Corrupt return
address

Corrupt C++ virtual
table pointer

Execute
ROP

payload

Execute
arbitrary
native
code

Limitation Example

Calling valid functions out of context
Corrupting a function pointer with the address of “system” or other sensitive functions is

possible because CFG is coarse-grained today

Modifying memory that is used to

create a CPU context

Corrupting data used by the loader, exception handler, unwinder, or set thread context

can lead to setting an instruction pointer to a controlled value

Making read-only memory writable
Coercing an application into making read-only pages writable and then corrupting

imported functions and other data CFG expects to be read-only

Reusing stale code pointers
Suspending a thread and then resuming it after the code referred to by the instruction

pointer has changed

Downgrade attacks
Coercing an application to load a DLL that doesn’t have CFG enabled or that has a gap in

CFG instrumentation/coverage

See our talk on The Evolution of CFI Attacks and Defenses for more information
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf

These are just a few examples of the real-world challenges with mitigating data-only corruption attacks

What can we do to get a point where we are “done” with vulnerabilities?

We don’t need to get to zero
vulnerabilities to get to “done”

This is a huge challenge, but it is a
goal state we need to work toward

Individual apps & services may
get to “done” at different rates

Design & logic vulnerabilities are more
challenging & require more thought

increasing cost & difficulty getting to done

Focus more on making it durably hard for developers to make mistakes while retaining good perf & dev efficiency

This bug class accounted for 49 vulnerabilities reported to MSRC in 2017-2018 (~4%)
We’ve been adopting span in key code bases (e.g. Hyper-V) and it has already

helped eliminate vulnerabilities that were later identified

We believe these focus areas will help us address many of the challenges we are currently facing

Attack a target environment … Threats

Through asset compromise

Supply chain

Physical attacks

Without authorized credentials

Vulnerabilities

Insecure configuration

With authorized credentials

Identity compromise

Malicious insiders

https://aka.ms/bugbounty

https://aka.ms/bugbounty

